
Number Theory A Solutions

1. Compute the remainder when 23
5

+ 35
2

+ 52
3

is divided by 30.

Proposed by: Matthew Kendall

Answer: 6

Computing the remainder modulo 2:

23
5

+ 35
2

+ 52
3

≡ 0 + 15
2

+ 12
3

≡ 0 (mod 2),

modulo 3,

23
5

+ 35
2

+ 52
3

≡ (−1)3
5

+ 0 + (−1)2
3

≡ 0, (mod 3)

and modulo 5 using Fermat’s Little Theorem,

23
5

+ 35
2

+ 52
3

≡ 23 + 31 + 0 ≡ 1 (mod 5).

By Chinese Remainder, we know the remainder must be 6.

2. A substring of a number n is a number formed by removing any number of digits from the
beginning and end of n (not necessarily the same number of digits are removed from each
side). Find the sum of all prime numbers p that have the property that any substring of p is
also prime.

Proposed by: Daniel Carter

Answer: 576

The prime numbers in question are 2, 3, 5, 7, 23, 37, 53, 73, and 373, which sum to 576.
One can find the one- and two-digit primes with this property without much difficulty. Given
those, the only candidate three-digit numbers are 237, 373, 537, and 737, of which only 373 is
prime. Then one can see immediately that there are no four-digit primes with this property,
since both the first and last three digits must also be primes with this property, i.e. they must
both be 373. This also means there are no primes with five or more digits with this property.

3. Compute the number of nonnegative integral ordered pairs (x, y) such that x2 + y2 = 32045.

Proposed by: Nancy Xu

Answer: 16

We can write 32045 = 5 ·13 ·17 ·29 = (1+2i)(1−2i)(2+3i)(2−3i)(1+4i)(1−4i)(2+5i)(2−5i),
and from here we can write x2+ y2 = (x− yi)(x+ yi) = 32045 by taking the product of one of

each of the conjugate pairs. There are 2 options for each conjugate pair for a total of 24

2 = 8
to account for overcounting, but x and y can be swapped, so there are 16 nonnegative ordered
pairs.

4. Let f(n) =
∑

gcd(k,n)=1,1≤k≤n

k3. If the prime factorization of f(2020) can be written as pe11 pe22 . . . pekk ,

find
k∑

i=1

piei.

Proposed by: Frank Lu

Answer: 818

First, note that we can write
n∑

i=1

i3 =
∑
d|n

∑
gcd(i,n)=d

i3 =
∑
d|n

∑
gcd(i/d,n/d)=1

d3i3 =
∑
d|n

d3f(n/d).

But then we have that (n
2+n
2 )2 =

∑
d|n d

3f(n/d). Now, note that, for a constant k dividing
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n, we have that
∑

k|d,d|n
d3f(n/d) =

∑
k|d,d|n

(kd′)3f(n/d) = k3( (n/k)
2+(n/k)
2 )2. Then, we can use a

PIE-esque argument based on divisibility by each of the prime factors (and products of these

prime factors), yielding us, after simplifying, n2

4 (p1−1) . . . (pk−1)( n2

p1...pk
+(−1)k).We thus find

that f(2020) = 20202/4∗4∗100∗4039, which equals 26∗54∗1012∗4039 = 26∗54∗7∗1012∗577,
yielding us the answer of 12 + 20 + 7 + 202 + 577 = 32 + 786 = 818.

5. Suppose that f : Z× Z → R, such that f(x, y) = f(3x+ y, 2x+ 2y). Determine the maximal
number of distinct values of f(x, y) for 1 ≤ x, y ≤ 100.

Proposed by: Frank Lu

Answer: 8983

Note that the only places where we can get distinct values for f(x, y) are those that are not
of the form (3a+ b, 2a+ 2b) for some integers (a, b) in the range 1 ≤ a, b ≤ 100. Observe that
if x = 3a + b, y = 2a + 2b, then we’d have that a = 2x−y

4 , b = 3y−2x
4 . In other words, for this

to occur, we need that 2x ≡ y, 3y (mod 4). But then we have that y is even and x is the same
parity of y/2.

Furthermore, for the points that are of the above form, in order for 1 ≤ a, b ≤ 100 as well, we
need 4 ≤ 2x − y ≤ 400 and 4 ≤ 3y − 2x ≤ 400. From here, we see that for a given value of
y, we have that y + 4 ≤ 2x ≤ 3y − 4, as the other two bounds are automatically satisfied as
1 ≤ x, y ≤ 100. But then with y = 2y1, we see that y1 + 2 ≤ x ≤ 3y1 − 2. For y1 ≤ 34, we
see that both bounds are the final bounds, meaning that, as x is the same sign as y1, we have
y1 − 1 values for x. Over the values of y1 this yields us with 33 · 17 = 561.

For 35 ≤ y1 ≤ 50, we have y1 + 2 ≤ x ≤ 100 as the sharp bounds. Notice that this yields
us with ⌊ 100−y1

2 ⌋ values for x, again maintaining the parity condition. Summing over these
values yields us with 25 + 25 + 26 + 26 + · · · + 32 + 32 = 57 · 8 = 456 values, so in total we
have 561 + 456 = 1017 values of (x, y) that are images of the function that sends (x, y) to
(3x+ y, 2x+ 2y) within 1 ≤ x, y ≤ 100.

The number of distinct values of f(x, y) is then at most 1002 − 1017 = 8983.

6. Let f(n) =
∑n

i=1
gcd(i,n)

n . Find the sum of all n so that f(n) = 6.

Proposed by: Frank Lu

Answer: 1192

Note that, the number of i so that gcd(i, n) = d is ϕ(n/d), if n|d. Then, we see that
f(n) =

∑n
i=1 gcd(i, n) =

∑
d|n dϕ(n/d) =

∑
d|n n/dϕ(d) Now, suppose that n has prime

factorization n = pe11 . . . pekk . Then, note that, since 1
dϕ(d) is multiplicative, we can write

f(n)/n as
∏k

i=1

∑ei
j=0

1

pj
i

ϕ(pji ) =
∏k

i=1(1 +
∑ei

j=1
1

pj
i

pj−1
i (p − 1)) =

∏k
i=1(1 +

∑ei
j=1

pi−1
pi

) =∏k
i=1(1+

ei(pi−1)
pi

). =
∏k

i=1(
(ei+1)pi−ei

pi
). Now, for this to be even, we need that the numerator

of this product to first be even. But note that for pi odd that (ei+1)pi−ei is odd, which means
that one of our primes has to be 2, which say is p1 = 2. Furthermore, we need that e1/2 + 1
needs to be even for the product to equal 6. We thus see that e1 = 2, 6, 10. For e1 = 10, we see
that we just have one prime factor, which means that we get the number n = 210 = 1024. For
e1 = 6, we have that e1/2 + 1 = 4, which is too small. However, note also that the smallest
possible value for any other term in the product, with pi ≥ 3, is 5/3 > 3/2. For e1 = 2, we
have that e1/2 + 1 = 2, again is too small. We want the product of the next terms to be
3. Note that we can’t have more than 2 other prime factors, the product of this is at most
5/3 · 9/5 · 13/7 = 39/7 > 3. For 2 prime factors, the smallest possible value of the terms due
to the other factors is 5/3 · 9/3 = 3, giving n = 22 · 3 · 5 = 60. For 1 prime factor, we want
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1+ e2(p2−1)
p2

= 3, or that e2(p2−1) = 2p2, which requires p2|e2, or p2−1|2, meaning that p2 = 3,

and that e2 = 3. This gives n = 22 · 33 = 108. Our total sum is thus 108 + 1024 + 60 = 1192.

7. We say that a polynomial p is respectful if ∀x, y ∈ Z, y − x divides p(y) − p(x), and ∀x ∈
Z, p(x) ∈ Z. We say that a respectful polynomial is disguising if it is nonzero, and all of
its non-zero coefficients lie between 0 and 1, exclusive. Determine

∑
deg(f) · f(2) over all

disguising polynomials f of degree at most 5.

Proposed by: Frank Lu

Answer: 290

First, we claim that all respectful polynomials of degree 3 or less have integer coefficients. To
see this, note that f(0) = 0. Consider now f(1), f(2), f(3). By Lagrange Interpolation, this
polynomial is uniquely determined by these values. Note that we can write this polynomial as
f(3)
6 x(x−1)(x−2)− f(2)

2 x(x−1)(x−3)+ f(1)
2 x(x−2)(x−3), by the above properties. Note that

the second term is a polynomial with integer coefficients. However, note that f(3) is divisible by
3, and is a multiple of 2 different from f(1). Hence, note that f(3)/3 and f(1) are both integers
of the same parity. Note then that this will result in an integer-coefficient polynomial, proving
the desired. In particular, no disguising polynomials of degree 3 or lower exist. We now consider
the case for degree at most 5 in general. For simplicity, let a(x) = x(x− 1)(x− 2) · · · (x− 5).

Again, we can write the polynomial in the above form, as
∑5

i=1(−1)5−i 1
i!(5−i)!

a(x)
x−i . Now,

note that f(5) ≡ f(2) (mod 3), which also means that f(5) ≡ 10f(2) (mod 3). Similarly,
we have that f(4) ≡ f(1) (mod 3). We can thus write this expression as x(x− 1)(x− 3)(x−
4)( f(5)−10f(2)

120 x− 5f(5)−20f(2)
120 )+x(x−2)(x−3)(x−5)( f(4)−f(1)

24 x− 4f(4)−f(1)
24 )+ f(3)

6 x(x−1)(x−
2)(x−4)(x−5). This shows us that the denominators of the coefficients have to divide 8; indeed,
note that f(5) − 10f(2) and 5f(5) − 20f(2) are both divisible by 15. Furthermore, we could
alternatively re-write this by taking (mod 2). This instead yields the expression (splitting the

term corresponding to i = 3 in half) x(x−2)(x−4)(x−5)( f(1)+f(3)
24 x+ f(1)+3f(3)

24 )+x(x−1)(x−
2)(x−4)( 5f(3)+f(5)

120 x+ 15f(3)+5f(5)
120 )+ . . . , with the remaining terms having leading coefficients

f(2)
12 and f(4)

24 , which have denominators that are not divisible by 4. This further shows that
the denominators have to divide 4. Repeating this argument for 4th degree polynomials shows
that all the denominators, in fact, have to divide 2, by only noticing the leading coefficients
of the terms with f(4), f(1). Checking the case for 4, notice that there can only be one such
disguising polynomial; if there were two, since both of the leading coefficients are the same, it
follows that their difference is somewhat disguising. But this doesn’t exist for a polynomial

of degree at most 3. Thus, noticing that x4+x2

2 is disguising, we see that this the only one for
this degree. By a similar token, notice that for any two disguising polynomials of degree 5
that have the same leading coefficient, notice that f − g must be an integer polynomial away

from x4+x2

2 . But the largest difference between the coefficients is −1. This means that either

such polynomials are equal or differ by x4+x2

2 , so there are at most 6 of these, with at most

2 for a given leading coefficient. For 1
2 leading coefficient, we see that x5+x3

2 is disguising;

the difference we have for x, y is (x−y)
2 (x4 + x3y + x2y2 + xy3 + y4 + x2 + xy + y2). But

notice that this is equivalent to 2x + 2y + 4xy (mod 2) since all powers of any integer have

the same parity. Thus, we see that x5+x4+x3+x2

2 is also disguising. For the coefficient with
1
4 , for this to be an integer at all, this has to double to some of the disguising polynomial,

meaning that this is x5+x3

4 , possibly with some 1
2x

i terms. By the difference with x4+x2

2 ,
we only need to consider 8 of these. Trying these out, note that only 4 of them actually

yield integers: x5+2x4+x3

4 , x5+3x3

4 , x5+x3+2x
4 , and x5+2x4+3x3+2x

4 . Requiring that f(4) is also
divisible by 4 restricts us to the first two possibilities. The second breaks down: plugging

in x = 5 yields 53·28
4 = 7 · 125, which is not equivalent to 1 (mod 4). As for the first, note

3



that f(3) = 27 16
4 = 27 · 4 = 108, which isn’t equivalent to 1 (mod 4). This means that no

other disguising polynomials exist. Our three disguising polynomials are thus x4+x2

2 , x5+x3

2 ,

and x5+x4+x3+x2

2 , which take on values 10, 20, and 30, resulting that 10 ·4+(20+30) ·5 = 290.

8. Consider the sequence given by a0 = 3 and such that for i ≥ 1, we have ai = 2ai−1 + 1. Let
m be the smallest integer such that a33 divides am. Let m′ the smallest integer such that a3m
divides am′ . Find the value of m′.

Proposed by: Frank Lu

Answer: 35

First, we show that ai divides ai+1 for each nonnegative integer 1. We do this by induction.
Our base case is i = 0, by which we see that this holds trivially. Now, say that ai divides

ai+1. Then, notice that ai+2 = 2ai+1 + 1 = 2
ai

ai+1
ai + 1. Notice that each of our ai will be odd,

meaning that we see that ai+2 = (2ai)
ai+1
ai + 1

ai+1
ai is going to be divisible by 2ai + 1 = ai+1.

This finishes our induction. Now, given a prime p, let i(p) be the smallest index i so that ai(p) is
divisible by p. We claim that vp(ai(p)−1), vp(ai(p)), vp(ai(p)+1), . . . is an arithmetic progression.
To prove this, we again show with induction that vp(ai(p)+k) = (k+1)vp(ai(p)). Our base case
is k = 0, with k = −1 given. From here, given this for all values before i(p) + k, notice that,

by the lifting the exponent lemma, we have that vp(2
ai(p)+k + 1) = vp(2

ai(p)+k
ai(p)+k−1

ai(p)+k−1
+

1) = vp((2
ai(p)+k−1)

ai(p)+k
ai(p)+k−1 + 1

ai(p)+k
ai(p)+k−1 ), which in turn equals vp(ai(p)+k) + vp(

ai(p)+k

ai(p)+k−1
) =

2vp(ai(p)+k)−vp(ai(p)+k−1) = (k+2)ai(p), which gives us our desired. Finally, notice that that
a3 = 2513 + 1, by trying the first two values. Notice that for each prime p that divides a3, if
j is the index so p first divides aj , it follows that the first index k where the power is up by 3
is so that (k + 1− j) = 3(4− j), or that k = 12− 3j − 1 + j = 11− 2j. Noticing that a0 = 3,
divisible by 3, we therefore have our index being 11 = m and therefore m′, by a similar logic,
equals 35.
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