
Number Theory A

1. Claim: M = 2017,m = 3.

m ≥ 1+min{1, 2, . . . , 2017} = 2. However, for m = 2, then it comes from a triple with median
1, which requires another element less than or equal to 1, which cannot occur. Instead, we can
explicitly describe a process to construct m = 3; for the first 1007 iterations, only choose from
{3, 4, . . . , 2017}. Then simply choose the three remaining values: 1, 2 and a value greater than
3.

In order to obtain M > 2017 we would need to get an element in the list equal to 2017 and an
element greater than 2017. However, this is impossible, since when there is an element equal
to 2017 there cannot be one greater. Instead, we can explicitly describe a process to construct
M = 2017; for the first 1007 iterations, only choose from {1, 2, . . . , 2015}. Then simply choose
the three remaining values: a value less than or equal to 2015, 2016 and 2017.

M −m = 2014 .

Problem written by Zack Stier

2. Assume all exponents considered are at least 1. For n > 1, an must have at least two distinct
prime factors (so that an−1 has one prime in common and an+1 has another); it is clear that
we can construct a sequence satisfying those requirements given a2 = cpaqb for p, q prime but
c not necessarily prime, by choosing no other element in the sequence to share prime factors
with c and by letting p | a1 and q | a3. We now simply wish to find the four smallest numbers
of the form cpaqb. Looking at numbers of the form pq: 6 = 2 · 3, 10 = 2 · 5, 14 = 2 · 7, 15 = 3 · 5.
However, 12 = 22 · 3 is also of the desired form, but any other value of c gets a2 > 15 (e.g.,

pq = 6, c = 3 =⇒ a2 = 18. So, our desired value is 6 + 10 + 12 + 14 = 42 .

Problem written by Zack Stier

3. The content of a rectangular prisms with side lengths a, b, and c is

(a+ 2)(b+ 2)(c+ 2)− 8,

so there is a rectangular prism with integer side lengths and content N iff N + 8 is a product
of three integers, each of which is greater than 2. A bit of case work shows the least such N
is 55 .

Problem written by Matt Tyler

4. We see that bn is 1 + lcm(1, 2, . . . , n′) where n′ is the greatest integer less than n such that,

for some prime p ≤ n, logp n
′ ∈ N. 36′ = 32 and 25′ = 25, so 1+lcm(1,2,...,32)

1+lcm(1,2,...,25) ≈
lcm(1,2,...,32)
lcm(1,2,...,25) =

3 · 29 · 31 · 2 = 5394 .

Problem written by Zack Stier

5. Let x = n− 30; then, we are looking at odd prime factors of p(x)p(x+ 60).

First we look at p(x) (mod 3). We find p(x) ≡ x2 − 1 ≡ 0 ⇐⇒ x 6≡ 0 (mod 3).

Say now that x ≡ 0 (mod 3), i.e. x = 3y. p(x) = p(3y) ≡ y4 + y2 (mod 5). y ≡ 0 is clearly
a solution; say temporarily that y 6≡ 0, so y4 ≡ 1; then for 5 | p(x), y2 ≡ −1 (mod 5), or
y ≡ 2, 3.

It takes a little more work to show that when y ≡ ±1 (mod 5), 7 | p(x)p(x+ 60), as it is not
always the case that 7 | p(x) (as it was with 3 and 5). (In fact, we will show a stronger result
– that 7 always divides the product.) Factor: p(x) = (x2 − 16)(x2 + 10) ≡ (x2 − 2)(x2 − 4)
(mod 7), and so p(x+ 60) ≡ ((x+ 4)2− 2)((x+ 4)2− 4). Now, consider the quadratic residues
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modulo 7:

x x2 x+ 4 (x+ 4)2

0 0 4 2
1 1 5 4
2 4 6 1
3 2 0 0
4 2 1 1
5 4 2 4
6 1 3 2

Note how each line has either a 2 or a 4 in the squared

column; this means that 7 always divides the product p(x)p(x+ 60) for any integer x.

Thus, we have n ≡ 1, 2 (mod 3) =⇒ an = 3; n
5 ≡ 0,±2 (mod 5) =⇒ an = 5; else an = 7.

Summing gives 7933 .

Problem written by Zack Stier

6. Let’s look at the period of powers of 2 modulo various odd primes p. If p = 3 then the period
is 2, since 20 ≡ 22 (mod 3). Similarly, p = 5 has period 4, since 20 ≡ 24 (mod 5). Why is this
useful? We know that if N · 2n + 1 ≡ 0 (mod p) and p has period Pp then N · 2n+Pp + 1 ≡ 0
as well. Thus we want to “cover” the nonzero modulo-12 residue classes with various primes.
This will give us what we want: if we can find a prime p for each m a non-multiple of 12
such that there is 0 < r < 12 with m ≡ r (mod p) then we will have succeeded. We use the
following periods: P3 = 2, P5 = 4, P7 = 3, P13 = 12. We start by placing the 3s to not cover
the 0 residue:

0 1 2 3 4 5 6 7 8 9 10 11
3 3 3 3 3 3

We now place the 5s as to be as non-redundant as possible, and also not cover the 0 residue:

0 1 2 3 4 5 6 7 8 9 10 11
3 5 3 3 5 3 3 5 3

We now have choices to place the 7s; the 13 will then be placed in the last remaining spot:

0 1 2 3 4 5 6 7 8 9 10 11
3 5 3 3 5 3 3 5 3

7 13 7 7 7
7 7 7 13 7

(The latter two rows are the two possibilities.) Thus we must solve the linear systems (using
the Chinese Remainder Theorem) and choose the viable value that is least:

2N ≡ −1 (mod 3) 2N ≡ −1 (mod 3)

4N ≡ −1 (mod 5) 4N ≡ −1 (mod 5)

4N ≡ −1 (mod 7) 2N ≡ −1 (mod 7)

16N ≡ −1 (mod 13) 256N ≡ −1 (mod 13)

=⇒ N ≡ 901 (mod 1365) =⇒ N ≡ 556 (mod 1365)

N = 556 is the minimal value satisfying the desired property, and we are done.

Problem written by Zack Stier

7. Let p = 17. We work modulo p. Note that solutions come in pairs (x, y) and (x,−y) (i.e.
(x, p − y)), except for solutions (x, 0). Thus, the number of solutions is even if and only if
x3 + ax + b has an even number of distinct roots modulo p. To count such pairs (a, b) we
employ complementary counting.
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If x3 + ax+ b has three distinct roots, it can be written in the form (x− r)(x− s)(x+ r + s)
for r 6= s, r 6= −r − s (so s 6= −2r), and s 6= −r − s (so r 6= −2s). The number of such pairs
(r, s) is p2 − 3p+ 2. This is because there are p2 pairs (r, s); p have r = s, p have r = −2s, p
have s = −2r, and it is easy to see that there is no overlap, with the exception of (0, 0), which
we counted thrice. Thus, p2 − 3p + 2 pairs (r, s) satisfy these conditions. Now, since we can
permute the roots r, s, and −r − s as we wish, the number of polynomials x3 + ax + b with

three roots is p2−3p+2
6 .

If x3+ax+b has exactly one root, it can be written as (x−r)(x2+rx+c) for some (r, c), where
x2 + rx+ c is irreducible. Thus, the number of such polynomials is the number of irreducible
polynomials x2 + rx + c. The total number of quadratics modulo p is p2, and the number
of reducible quadratics is p +

(
p
2

)
(because a reducible quadratic either has a double root —

there are p of these — or has two distinct roots). This leaves p2− p−
(
p
2

)
= p(p−1)

2 irreducible

quadratics, and thus p(p−1)
2 polynomials of the form x3 + ax+ b with exactly one root.

Thus, there are p2−3p+2
6 + p2−p

2 such polynomials with an odd number of distinct roots, and
since there are p2 polynomials total (p possibilities for a and p possibilities for b), the number
of polynomials with an even number of distinct roots, and thus the number of pairs (a, b) such
that y2 = x3 + ax+ b has an even number of solutions modulo p, is

p2 −
(
p2 − 3p+ 2

6
+
p2 − p

2

)
=

2p2 + 6p− 2

6
=
p2 + 3p− 1

3
.

Plugging in p = 17, we obtain 113 as our answer.

Problem written by Eric Neyman

8. Algebraic manipulation reduces this to minimizing
a+99∑
x=a

gcd(x, 400) for a ∈ N (by playing with

the variables and noting periodicity and symmetry of gcd about 0). We claim this occurs at
a = 1. Set k = 100 and n = 400. We now solve this problem in generality.

Lemma: Let n be a positive integer and let S be a finite multiset of factors of n. For each
d | n, let md(S) be the number of multiples of d in S. Then∑

k∈S

k =
∑
d|n

md(S)φ(d).

Proof : This is a simple induction on the number of elements of S. The theorem is clear for
|S| = 0; suppose it holds for |S| = r. Now let S have r + 1 elements and choose k ∈ S. Let
S′ be S with one fewer copy of k; the theorem holds for S′. Adding k to S′ increments the
left-hand sum by k and the right-hand sum by

∑
d|k φ(d), since md(S) = md(S′) + 1 for d | k

and md(S) = md(S′) for all other d. But
∑

d|k φ(d) = k, so the theorem holds for S. This
completes our induction.

For n implicit, define the multiset Sa,k = {gcd(x, n) | x ∈ {a, a + 1, . . . , a + k − 1}}. Observe
that for all d | n, holding k constant, md(Sa,k) is minimal for a = 1. It follows from the Lemma

that
a+k−1∑
x=a

gcd(x, n) is minimized for a = 1, as desired.

Going back to the problem, we thus find that the minimum value occurs at M = 101; a
consequence is that 0 is also a minimum; and thus 2000 too is a minimum. Computation gives
that the sum there is equal to 680 .

Problem written by Eric Neyman and Zack Stier
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If you believe that any of these answers is incorrect, or that a problem had multiple reasonable
interpretations or was incorrectly stated, you may appeal at http://tinyurl.com/PUMaCappeal2017.
All appeals must be in by 1 PM to be considered.
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